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Abstract-This paper is concerned with the small-amplitude oscillations of a bubble composed of an ideal gas 
in response to an abrupt change in the ambient pressure field. Specifically, we consider the bubble response to a 
pressure pulse and a pressure step in an otherwise quiescent fluid. The method of analysis employed in the present 
study is a standard two-timing expansion to eliminate a secular behavior encountered in the asymptotic expansion. 
In the impulse response the secularity is self-induced due solely to the nonlinearity of the problem whereas the 
secularity in the step response arises from the change in the equilibrium bubble volume caused by the ambient 
pressure change. The two-timing solution for each response shows that the secularity modifies the natural frequency 
of the radial oscillation. Further, the critical intensity ot either the pressure pulse or the pressure step for existence 
of the steady-state bubble radius is determined from the frequency modulated solution and the stability of the bubble 
response is also discussed in terms of the bubble compressibility and heat transfer across the interface. 
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INTRODUCTION 

In this paper, we consider the nonlinear dynamics of bubble 
oscillations in response to abrupt changes in the ambient pressure 
in a fluid at rest at infinity. The bubble dynamics problems have 
attracted much attention for several reasons. First, the bubble 
motion coupled with the pressure variation in the surrounding 
is highly nonlinear, and second, this is responsible for many im- 
portant effects, ranging from emulsifications to acoustic cavitation 
noise. The cavitation noise associated with the bubble oscillation 
is relevant particularly in the field of hydromachinery or to some 
aspects of the propulsion systems of submarines and other under- 
water vehicles. A time-dependent change of the bubble volume 
causes a periodic compression and expansion of the surrounding 
fluid, and thus produces sound wave. The energy exhausted by 
these waves is supplied from the kinetic energy of the bubble 
[-1]. One of the most interesting subjects in cavitation noise is 
the modifications of frequency and amplitude by the shape and 
volume oscillations of the cavity. An important objective of the 
present analysis is to predict the amplitude and frequency modifi- 
cations arising from the nonlinear effects on the bubble oscillation 
of the radial 'breathing' mode which is the most significant sou- 

rce of cavitation noise. 
Since Rayleigh had first considered the problem of cavitation, 

the dynamics of a bubble under time-dependent pressure field 
has been extensively investigated and earlier studies of bubble 
dynamics and cavitation were well reviewed by Plesset and Pros- 
peretti [-2]. For the volume oscillation of a spherical bubble gen- 
erated by the ambient pressure field, Rayleigh-Plesset equation 
is the most important governing equation. This equation describes 
the so called radial 'breathing' mode of bubble oscillations in an 
infinite viscous liquid, i.e., change in the bubble radius in response 

tTo whom all correspondence should be addressed. 

to perturbations in the ambient pressure. However, the Rayleigh- 
Plesset equation has some limitations for practical applications. 
For example, it does not include the effect of thermal damping. 
Moreover, when the gas contained in bubble is polytropic, the 
equation becomes highly nonlinear and exact solution is impossi- 
ble for arbitrary amplitude of oscillations. In this case, analytic 
solution is possible only for small-amplitude motion in which the 
equation can be linearized 1,3]. In spite of these restrictions, the 
Rayleigh-Plesset equation is very useful in understanding the phy- 
sics of bubble oscillations including the chaotic variation of the 
bubble radius and the resonance effects due to the self-induced 
secularity 1'4, 5]. Recently, studies about bubble have been extend- 
ed to bubble oscillations either in the presence of external mean 
flow or in the electric field 1,6, 7]. Further, the nonlinear oscilla- 
tions of a constant-volume bubble have also analyzed to examine 
the mechanism for energy transfer between modes of the shape 
oscillations 1-83. 

When a bubble oscillates in response to perturbations of the 
ambient pressure, it executes the sustained growth and collapse 
in its volume. Further, when the bubble is immersed in an exter- 
nal mean flow or an electric field, the resulting nonuniform pres- 
sure on the bubble surface generates shape oscillations around 
an equilibrium shape. In the absence of the external field, the 
volume oscillation associated with the radial mode yields a mono- 
pole emission of sound which corresponds to a pressure distur- 
bance decaying as 1/r with the distance r from the bubble. Accord- 
ing to Minnaert 1'9], the frequency of the sound is close to that 
of the radial mode oscillations of a spherical bubble containing 
air. However, in the study of resonant interaction between shape 
and volume oscillations, Longuet-Higgins El0] showed that shape 
oscillations can also produce the monopole sound in a quiescent 
fluid when the frequency of radial mode is twice that of shape 
oscillations. Recently, Yang et al. E l l ]  examined the resonant in- 
teraction for a bubble oscillating around a nonspherical equilib- 
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rium shape in the presence of an external field. In this case. 
the resonance occurs when the frequency of radial m(~-le is either 
equal to or twice that of the shape oscillations. 

In the present work, we are concerned with the nonlinear ef- 
fects on bubble oscillation in a quiescent fluid due to abrupt chang- 
es in the ambient pressure. Since the fluid is at rest at infinity. 
the equilibrium shape of the bubble is spherical. Our work utilizes 
small-deformation, perturbation analysis carried to second and 
higher order in the amplitude of deformation, ~:. Spec.fically. we 
will discuss the bubble dynamics in response to a pre.~,sure pulse 
at t = 0 and a pressure step at t " 0. We begin, at first, w~th formu- 
lating the governing equatton and boundary conditions. In this 
part. we will peril)tin dimensional analysis to determine :he dimen- 
sionless parameters inherent in this problem and linearize the 
nonlinear problem by employing the domain perturbation techni- 
que. The present analysis identifies two different mechanisms 
for resonant interactions due to the secularities arising from non- 
linearities of the original problem. The secularities will modify 
the oscillation frequency, which is relevant to the stability of the 
equilibrium bubble size. 

F O R M U L A T I O N  O F  T H E  P R O B L E M  

We begin by considering the governing equation and boundar3' 
conditions for a small-amplitude oscillation of a spher.cal bubble 
containing an ideal gas in response to an abrupt change in the 
ambient pressure. The surrounding fluid is incompressible New- 
tonian with viscosity V and density p and assumed to be motion- 
less in the absence of the pressure fluctuation. Thus. the vehwit~, 
field is developed only by the disturbance due to the bubble oscil- 

lation. We assumed the surface of bubble to be charactr rized com- 
pletely by a constant surface tension c~ and the radiu.,, of bubble 

at the initial equilibrium state to be R,,. In the subsequent analysis. 
all the variables are nondimensionalized with the relevant charac- 
teristic length (l), time (L) and pressure (P.) defined as 

l, K,, t. I'WO) ~. 
(3 

= = - -  P. = - ( l l  
�9 o R 

Then, at equilibrium the difference of the pressures inside anti 
outside of the bubble is balanced exactly by the surface tension, 

i.e., 

~,, - E, ~ = 2 (2) 

in which the tilde ( ~ )  symbolizes the pressure inside of the bub- 
ble. In this paper the subscript "0' denotes the equilibrium varia- 
bus  and the superscript '=: '  the variables at large distances from 
the bubble. Eq. (2) is simply the dimensionless form of Laplace- 

Young equation. 
We now define the oscillating surface of the bubble :n response 

to perturbation in the ambient pressure as 

S : r - 1  f ( t ) = 0  (3) 

where fit) represents the time-variation of the bubble radius. For 
the case in which the bubble contains only an insoluble gas and 

mass flux across the surface due to vaporization and c,mdensation 
is small enough to be neglected, the radial componenl of velocity 
u, can be related to the function fit) by the kinematic boundary 

condition on the bubble surface. 

(1 +f)z df (4) 
u,(r.t) :- r2 dt 

The pressure field corresponding to the velocit.v field (4) is deter- 
mined the Navier-Stokes equation as: 

P(t)= P~(t)'l (]-r 13: f ~- 2 (-15"r f) (~)' - ~ ( i ) :  (5) 

in which {= df/dt and f:= dZffdt :. Since we are concerned with 
the spherical bubble, the dynamic bounda~" condition on the bub- 
ble surface r -  ] .4-f is simply given by 

4 ~ 2 
P(t)-- P,(t) . . . . . . . . . . . . . . . . . .  (6) 

Re (1,13 ( l - f )  

where 15(O denotes the pressure inside of the bubble and P~lt) 
the pressure on the surface outside uf the bubble. The dimension- 
less parameter Re is the Reynolds number  for bubble oscillations 
and defined as follows: 

R e  L/"I~R,~ 
1.1 

The pressure P,(t) on the surface can be determined from (5) 
in terms of the ambient pressure P'(t) and the shape function 
fit). Then. the dynamic condition (6) can be written as follows: 

(I - f ) f -  -'~ (b' + 4 I" 2 
Re (1 + O - L~(t)- P ' ( t ) j -  -(1-,7 ~ (7) 

The Reynolds number for a bubble executinl,; shape o~illations 
is ve~' large and the contributions from viscous forces are usually 
negligible. For example, when an air bubble of 100 pm in radius 
oscillates in water at 20C, the Reynolds number is as large as 
Re = 85. ]'bus, in the analysis which follows we neglect the viscous 
terms from the governing equations. 

in addition to the governing equation and bounda~' conditions 
for fluid motion, there exists a thermodynamic constraint with 
a pressure-volume relationship: 

~(t)=(1-r 13 :" ~,, (8) 

Here, ), is a polytropic exl~ment which depends on the thermody- 
namic nature of the bubble oscillation. The ex~ment y is bounded 
by the two limiting values. The lower limit correstx)nds to the 
slow oscillation case in which the rate of heat transfer is sufficient- 
ly fast that the temperature is uniform throughout the fluid includ- 
ing inside of the bubble. In this case, the oscillation is an isother- 
mal process and the exponent "t is unity. The upper limit is for 
the fast oscillation in which the gas contained in the bubble is 
practically thermally insulated from the surrounding. In this case. 
), is given by the ratio of the specific heats and has a value 1.4 
for an ideal diatomic gas. For many situations of interest, the 

bubble behaves neither isothermally nor adiabatically, hut some- 
where in between two limits El2]. 

The problem defined al~)ve is a nonlinear Iree-bouuda~' prob- 
lem and analytic exact solution is not attainable for oscillations 
with an arbitrary amplitude. In this study, we consider small am- 
plitude oscillations of a spherical gas bubble in response to 'ab- 
rupt" changes in the ambient pressure P'(t~, i.e.. 

P'( t )  :-- P,,' - cA(t) (9) 

where eA(t) is the pressure perturbation from the equilibrium 
state and c denotes the order ~f magnitude. The source of the 
oscillations in bubble volume is an abrupt change in the pressure 
at the bubble surface ~A(t). This type of surface pressure can 
be produced experimentally via modulated ultrasonic acoustic 
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wave fields [-13]. Since we are interested in small amplitude oscil- 
lations for which analytic solution is possible, the magnitude of 
pressure perturbation is expected to be small, i.e., e ~ l .  In this 
case, the magnitude of amplitude function f(t) is also O(e). Under 
these conditions, we can expand the thermodynamic relationship 
(8) as a Taylor series about f= 0, 

~-0 = - 3yf + 3y(3y + 1)fz- l ' r ( 1  + 3T)(2 + 3y)f'+ O(P, (i0) 

Then, plugging (9) and (10) into (7) and carrying out the Taylor 
series expansion, we get 

(1 + 0f+  3(b2 + e. A(t) 

= - ~ o [ 3 V f - 3 y ( 3 y  + 1)f2 + 1V(1 + 3)')(2+ 3y)f 3] 

+ 2 f -  2ff + 2P + O(P) (11) 

In obtaining the above equation, we utilized the equilibrium con- 
dition: 

fo=0 
~ o - p 0 ~ = 2  

Thus, if the amplitude function fit) for bubble radius is deter- 
mined from (11), the velocity and pressure fields generated by 
the bubble oscillation can be obtained easily from (4) and (5), 
respectively. Since we consider the small amplitude oscillations, 
it is convenient to expand the amplitude function for Ibe bubble 
radius in the asymptotic limit e ( 1 .  

f(t)= Z r (12) 
n== l 

P,(t) = p ( t ) -  P0 ~ -  e'A(t) = Z e'P, (13) 
~ = 1  

In (13), P~(t) is the disturbance pressure due to the bubble oscilla- 
tion. As noted earlier, the monopole sound which is the most 
significant source of cavitation noise is related to the pressure 
fluctuation with decay like r -k  Thus, we present here first term 
of the monopole pressure disturbance in terms of the amplitude 
function: 

Pd~(t) = --~'f, + O(~: 2) (14) 
r 

Now, the amplitude function can be determined by substituting 
the asymptotic form (12) into (11). In the following sections, we 
evaluate the monopole pressure disturbance due to the bubble 
oscillation which is caused by the pressure impulse and the pres- 
sure step both applied at t = 0  and we begin with the pressure 
impulse. 

IMPULSE RESPONSE IN A QUIESCENT FLUID 

We consider the radial mode oscillation of a bubble generated 
by an impulsive change in the ambient pressure. In this case, 
the perturbation E'A(t) of the ambient pressure from the equilib- 
rium state can be expressed in terms of Dirac delta function 5(t), 
i.e., 

A(t) = AoS(t) (15) 

Then, the solution for f,(t)(n= 1, 2,-") can be obtained straightfor- 

Fig. 1. Natural frequency o~/2n of the linear oscillation of radial mode 
as a function of the equilibrium radius 1~,. 

wardly from (11) and (15): The leading order problem is sim- 
ply 

fl + oJ2f, = - AoS(t) (16) 

in which the natural radian frequency o) of tbe radial oscillation 
with no contribution from the nonlinearity is defined as 

o~2 --- 3~oy- 2 (17) 

In Fig. 1, the dimensional natural frequency in Hz is plotted as 
a function of the equilibrium bubble radius for the polytropic con- 
stant y = 1 and 1.4. As anticipated, the natural frequency is increas- 
ed as the bubble size becomes smaller. This clearly indicates that 
the smaller bubble is more stable than the larger bubble, which 
we shall see shortly. The leading order solution is given by 

no. 
fl = - - -  sm 00t (18) 

r 

Similarly, the second order solution can be calculated by utilizing 
the leading order solution (18): 

Ad 
f2 = C, costot + C2sincot - ~ E3(2 + V)r 2 + 2(3y-  1)]cos2c.ot 

+ ~ [-3yo)2 + 2(3y-  1)] (19) 

wbere the unknown integral constants C, and C2 must be deter- 
mined from the initial conditions for O(e 2) problem. It is clear 
from (19) that there is no secular behavior in the O(~) solution. 
In order to examine the existence of secularity, we seek the third 
order solution. The corresponding differential equation for fa(t) 
is given by: 

f3 + o)2t~ = - (f2f, + flf2 + 3~,[2) + {(o2(1 + 3"[) + 2(3y-  1)}fif2 

+ {2-I(co2 + 2)(3y+ l)(3y+ 2)}f, 3 (20) 

Then, substituting f, and f2 into (20), we encounter the stir-induced 
secular terms violating the validity of regular perturbation method 
for a bounded solution as below: 
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"" 2 Ao ,3  o)2 . 5 2 
f+o) f~= - 2 ( ~  ~---) []-6 (672- 3 ) ' -  2) + 1~2(3 Y - 1) 

+ 1(7)'-  2)(3y - 1)]cos(ot + n.s.l's (21) 

in which n.s.t's denotes the nonsecular terms. Since we expect 
a bounded solutkm for a small perturbation in the ambient pres- 
sure, we should eliminate the self-induced secularities. "['he meth- 
od of analysis for eliminating the secular behaviors is a typical 
multiple scale expansion. Details on the multiple-scale technique 
can be found in Bender and Orszag El4]. To do this, we introduce 
a new, slow time scale ~ which is related to the fast lime scale 
t by 

: = ~2t (22) 

In the two-timing procedure, the O(e) solution is expressed in 
terms of two independent time scales, t and :, that is, 

1 
f~(t, z ) -  -A-[ct(r)exp(io)t)] + c.c. (23) 

Fig. 2. Modified frequencies f~ as a function of the intensities of the 
pressure impulse and step for o)= 10. 

with 

a(0) = A~ (24) 
co 

in which a(z) is the slowly varying amplitude function on the 
time scale : and c.c. denotes the complex conjugate of the prece- 
dent terms. With this expression, we can solve the O(~2) problem 
for f2. The result is 

- - 12--~2-[-3(2 + u 2 + 2(3y-  1)ja 2 exp(i2o)t) f2(t, ~) 

1 2 .4_1 + ~-~ [3yo)' + 2(3y-  1)]act ~-13(r)exp(io)t) + c.c. (25) 

where 13 is a slowly varying complex function of ~ and can be 
determined in such a way to remove the secularity occurred in 
the higher order problem. In (25), a* denotes the comp]ex conju- 
gate of ct. 

After substituting (23) and (25) into (20) and collecting secular 
terms, we obtain a differential equation for ct, which can eliminate 

the secular terms: 

dct o) r + 5 2 
- [ ~ ( 6 y " - 3 ) ' - 2 )  ~ ( 3 ) ' - 1 )  

+ ~ (7) ' -  2)(3u 1)] ct%t* (26) 

The solution for a satisfying the initial condition (24) is given 

by 

a(r)=i(~)expl-i(~A2-)2[~(6yZ-3y-2) (3) ' -1)  2 
\ (1) / " \ CO / LIO 12o) :~ 

~ (7)'- 2)(3u (27) 

Finally, the asymptotic solution for the amplitude function can 
be expressed in terms of the fast time scale t. 

f,(t)= - t Z ) s i n L L o ) -  - 3 y -  2) 

20(3y- -  1) "~] t ]  + 2 (3) ' -  1)(7)'- 2) § ~ j j  j (28) 

It is simple matter to evaluate the monopole pressure associated 
with the bubble oscillation from (28). The result is given as: 

Hence, the monopole pressure is in phase with the radial oscilla- 
tion. 

It can be easily seen from comparing (28) with (18) that the 
frequency is modified due to the nonlinear effects. In Fig. 2, the 
modified frequency is plotted as a function of the intensity of 
the pressure pulse. Also included for comparison is the modified 
frequency versus the intensity of the pressure step which we 
will discuss shortly in the next section. It can be easily seen from 
the figure that the frequency is decreased monotonically as the 
intensity of the pressure pulse becomes large, which is independ- 
ent of y and o). Further, the rate of decrease is larger in the 
adiabatic oscillation than in the isothermal case. The fact that 
the frequency of oscillation decreases has an important physical 
significance, because at a critical intensity of the pressure pulse, 
the square of the true frequency of oscillation becomes zero and 
eigenvalues for the amplitude function change from pure imagi- 
nary to real. This critical intensity (e,~)~, will corresponds exactly 
to a limit point for existence of the steady state value for the 
bubble radius in the pressure pulse. The critical intensity can 
be determined readily from the present asymptotic solution. The 
result is 

24o) s . ) _  

(~A~176 - 3o)4(6) z - 3)' - 2) + @o2(3y 1)(7)' - 2)+ 20(3u - 1)~ (30) 

In Fig. 3, the critical intensity is illustrated as a function of the 
polytropic constant y for various values of the natural frequency 
o). It can be easily seen that the bubble executing the isothermal 
oscillation is more stable than it would execute the adiabatic oscil- 
lation for the impulsive change in the ambient pressure. Thus, 
heat transfer across the interface enhances the stability. Further, 
as the radian natural frequency increases, the bubble becomes 
more stable. As noted earlier, the natural frequency is a decreas- 
ing function of the bubble radius and the larger bubble becomes 
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Fig. 3. Critical impulse intensity as a function of the polytropic expo- 
nent. 

less stable. 

STEP  RESPONSE IN A QUIESCENT FLUID 

In the preceding section, we have discussed the response of 
a bubble to an impulsive change in the ambient pressure. In this 
section, we consider the bubble response to a step change in 
the ambient pressure. 

A(t) = AoH(t) (31) 

where eAo is the intensity of the pressure step. In the step re- 
sponse, the leading order solution without taking into account 
the nonlinear effect is simply given by 

f, = - -~-2 (1 -coso t )  (32) 

Thus, the bubble radius oscillates around a new steady-state value 
R = l - s A o / o  z in response to the pressure step. It can be noted 
that as the natural frequency is increased, the compressibility 
of the bubble is reduced. 

Following the preceding analysis, we can easily show that the 
regular perturbation breaks down at O(e 2) at which a secularity 
appears. Thus, expecting a bounded solution of the bubble oscilla- 
tion for a small perturbation in the ambient pressure, we define 
a new, slow time scale as: 

= s t  ( 3 : ] )  

Then, the leading order solution can be expressed in terms of 
the two time scales 

1 
fl(t, z) = ~-[a(~)exp(io~t)- -~-]  + c.c. (34) 

with 

a(0) = ~-2 (35) 

where, a(~) is a complex amplitude function and c.c. denotes the 
complex conjugate. The slowly varying function a(~) is determined 
in such a way that the secular terms at O(~ 2) is eliminated so 

Fig. 4. Critical step intensity as a function of the polylropic exponent. 

that the solution of O(e 2) problem remains bounded. The differen- 
tial equation for O(e 2) problem can be obtained by utilizing the 
solution form (34) and given as: 

+ c.c. + n.s.t. "s (36) 

The secularity at O(e z) in this case is not  self-induced but arises 
from the change in the steady-state bubble volume from the initial 
equilibrium state, which is caused by the ambient pressure 
change. As in the previous case, the condition for the absence 
of the secular behavior determines the slowly varying amplitude 
function which provides the solution for the bubble oscillation. 
The result can be expressed as follows: 

Then, the monopole pressure associated with the bubble oscilla- 
tion can be readily determined from (14) and (37): 

P~(t) = - ~  cos m + - - - - - * ~ t J y - 1 )  t - 1  (38) 
r o t 2 c0 

When Ao>0, the bubble volume decreases from the initial equi- 
librium state to a new steady-state value in the increased ambient 
pressure and the oscillation frequency increases. Consequently, 
the bubble is stabilized by the positive pressure step. When Ao<0, 
however, the response of the bubble is quite different from the 
response to the positive pressure step. For the negative pressure 
step, the new steady-state bubble volume in the reduced ambient 
pressure increases from the initial equilibrium value, which re- 
sults in decrease in the oscillation frequency, which is depicted 
in Fig. 2. In fact, there is a critical intensity of the pressure step, 
(-e.Ao), at which the square of the frequency is zero. As mention- 
ed earlier, the critical intensity of the pressure step corresponds 
to the limit point for existence of the steady-state bubble volume 
in the reduced ambient pressure. The critical intensity can be 
determined readily from the present asymptotic solution (37) and 
given by 

~o 4 
( -  eAo)c = 2(3y - 1) + oz(2 + 3y) (39) 
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Fig. 4 signifies the effects of the polytropic exponent )' and the 
natural frequency (or the compressibility) of the bubble on the 
critical intensity of the pressure step which leads to bubble break- 
up. It can be easily seen from the figure that the bubble executing 
the adiabatic oscillation is less stable than it would oscillates iso- 
thermally. Further, as the natural frequency increases, the bub- 
ble becomes more stable. 

Finally, we consider the difference between the bubble respons- 
es to the abrupt changes and response to the oscillatory change 
in the ambient pressure, which has been considered by Leal [-3]. 
In the oscillatory response, the ambient pressure is loven by 

A(t) = Ao sin toot (40) 

where the forcing frequency coo is arbitrary. In this case, provided 
only that o~o is not equal to o~, the asymptotic solutions obtained 
via a standard regular perturbation method are valid, i.e., the bub- 
ble radius oscillates periodically with an amplitude of O(~). When 
to=00~, however, the secularity appears at O(~) due to the reso- 
nance with the oscillating pressure field. It means that, if a bound- 
ed solution is to exist, the O(e) pressure variation must be bal- 
anced by one or more of the nonlinear terms. This is quite different 
from the cases of the pressure pulse and pressure step in which 
the resonances occur at O(e 3) and O(e2), respectively, due to either 
the self-induced secularity or the secularity arising from the equi- 
librium volume change. Leal considered the resonant :interaction 
between the bubble and the ambient pressure and obtained a 
bounded solution by utilizing the two-timing expansion defined 

a s :  

fit, v ) -  el*k(r)sin {cot - ~(~)} (41) 

with 

z = ~2/3t (42) 

The response of a bubble to a periodic pressure fieM, in fact, 
differs from the results for the pressure pulse and the pressure 
step in several aspects. First, when the bubble oscillates in the 
oscillatory pressure field, the resonant interaction modifies not 
only the frequency but the amplitude of the radial oscillation. 
Second, the resonant interaction with the small amplitude pres- 
sure oscillation induces the bubble oscillation with an amplitude 
of O(e t/3) which is still asymptotically small but much larger than 
the O(~:) amplitude of the pressure forcing. Furthermore, the dis- 
turbance pressure associated with the bubble oscillat:ion is also 
O(e ~/3) which is asymptotically very large compared to the pres- 
sure forcing. In the step or impulse response, the amplitudes 
of the bubble and disturbed pressure oscillations are the same 
order as the intensity of the pressure impulse or step. This is 
a consequence of the difference in the pressure forcings. In the 
pressure impulse or step, the pressure changes abruptly at t = 0  
and after then it remains constant without forcing any longer. 
In the osciltatory response, however, the pressure forcing is contin- 

uously sustained for t~_0. 

CONCLUSION 

The small-amplitude oscillations of a compressible bubble in- 
duced by a pressure pulse and pressure step in a quiescent fluid 
have been analyzed discussed using a standard method of multi- 
pie-scale analysis. From this analysis we have the following con- 

clusions. 
1. For an impulsive change in the ambient pressure, the regular 

perturbation gives the self-induced secular terms at O(e3), which 
can be removed by the multiple-scale analysis. From the frequen- 
cy-modulated solution at O(e), the critical inten,dty of the pressure 
impulse for existence of the steady-state bubble volume can be 
evaluated. The critical intensity is independent of the sign of the 

pressure impulse. 
2. The bubble response to the step change ir~ the ambient pres- 

sure contains the secularity at O(e 2) which modifies the oscillation 
frequency at O(e). For a positive pressure step, the bubble is 
always stable. However, for a negative pressure step in which 
the bubble oscillates in the reduced pressure, there exists a criti- 
cal intensity of the step. 

3. As the bubble compressibility increases or equivalently the 
natural frequency decreases, the bubble becomes less stable. Fur- 
ther, heat transfer across the interface enhances the stability in 
both the cases. 
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